Category

Design

3D printing a stress-free Xmas

By | Design, Stuff and Things | No Comments

No Christmas is complete without a mad dash for presents in the final few days. If you’re like me and have left shopping to the last minute, there’s really no alternative to an exhilarating, stressful day of retail shopping to guarantee you can deliver on the big day itself.

But this doesn’t have to be the story. In fact, why buy presents at all? If you have a 3D printer, why aren’t you making them? You don’t need to design your own presents. That’s far too much effort in the run-up to Christmas. Instead, you can download any number of free gifts from online libraries like MyMiniFactory or Thingiverse. You can even personalise the models you download with free software such as Microsoft’s 3D Builder to make your gift even more personal.

The gift you make doesn’t even have to be good. The fact that it’s been 3D printed will be enough to blow the recipient away. And isn’t it the thought that counts anyway?

If you own a 3D printer, let it help you de-stress your Christmas and save a packet in the process. 3D printing your own gifts is fun and extremely cost-effective. What kind of bracelet could you buy for 47p?

xmas-2016And if you don’t own a 3D printer, perhaps you should consider making one of your New Year’s resolutions to involve yourself in this exciting, liberating technology. Robox recently won 3D Hub’s award for best “Plug ‘N’ Play” 3D printer in the world for the 2nd year running. Anyone can become a maker, especially with Robox.

e-NABLE – the most inspiring 3D print project I’ve seen

By | AutoMakerNewsflash, Design, Education, Printables | 3 Comments

I was recently introduced to the e-NABLE project by our friends André and Guillaume at Le Comptoir 3D

This is an awesome venture that aims to get functional 3D printed hands to people around the world.  Heard this before? Well e-NABLE takes a different approach… Anyone with a 3D printer can make a difference thanks to the network of e-NABLE volunteers around the world.

These hands don’t replace expensive, highly functional natural looking prosthetic hands – but they’re not meant to. Children who have limb differences can’t always get prostheses (partly because they’re growing) so these hands can make a real and immediate difference to their lives.

Take a look at this video from e-NABLE to see what I mean.

Now tell me you don’t want to use your Robox to make a difference.

Visit http://enablingthefuture.org/ for more information on how to help.

And if you’re a student or teacher reading this then please take a look at http://www.handchallenge.com/ and involve your school in this amazing project.

The story of e-NABLE is inspiring – you can be part of it too.

Here’s my first print of a Raptor hand produced on a Robox – I’ll add more pictures when it’s assembled.

Raptor 3D printed prosthetic hand

Thanks for reading!

Ian

 

Tiny Timbot!

By | Design, Robox User Blog, Stuff and Things | No Comments

I wanted to post up some feedback from a Robox user and share some of the amazing work he has been doing to make robots imitate life.

Jason from Mechanimal emailed us this very watchable robot.

Not only is he walking, he’s using his arms to help balance, like he should, and he’s using his tiny little eyes to detect obstacles. That’s no wind up toy, that there is an autonomous robot, tiny baby version.

It has 8 independently controlled servo motors, an IR sensor for eyes, 2 microphones, a speaker, and all of the control circuits are in it’s wee little head. A total of 18 pieces in two colors, all from my Robox, and he stands but a few inches tall. Not bad for my first project using the Robox, super excited to make more complex parts with the new dual material head.

And a HUGE thanks once again, this is the machine I’ve been waiting 15+ years for.

 

Check out some of Jason’s other work, Tiny Timbot will lead you into a whole world of mechanical animals. You can even get involved by becoming a patron here.

AutoMaker 2.01.03 release and TechABS

By | Chris Elsworthy Design Blog, Design, News, Software Updates | 6 Comments

Hi Robox Users,

We’ve got some new features in AutoMaker to let you know about which are around making results match expectation and warning users when Robox cant continue. We’ve also release a new formula of ABS which is making it the material of choice for me right now.

AutoMaker Improvements

  • SurePrint enhancements
    • Off-bed model checks occur at project load time
    • Prints cannot be started if a model is off-bed
    • PLA is ejected if not required during a print with high bed temperatures
    • Bed temperature is lowered to PLA levels and raft is enabled if PLA and a different material are in use simultaneously
    • Improved post-processor and slicer failure indications

In previous versions the post processor was responsible for checking the sliced model to ensure that head movements were not beyond the ability of Robox, we now check the model before it is sliced to ensure it fits inside the build volume and thus wont generate moves that can’t be performed.

We’ve seen a few Dual Material users printing with PLA and and another materials that need higher temperatures at the same time, this has the potential to cause problems.  If the PLA filament gets too hot before it reaches the head it can jam the system, to overcome this and still allow these two materials to be printed together we’ve introduced some automated systems. Firstly, if the PLA was loaded but not used in the print we simply eject it just before the print to ensure it out of the build environment. If PLA is used for the build alongside another hotter material then AutoMaker now uses the PLA target temperature for both the bed and ambient, to ensure that the model sticks to the bed raft is automatically switched on.

AutoMaker check that the combination of the raft thickness and the models height to ensure it still fits into the build volume.

There are a number of checks that the post process does to the sliced model before allowing the print to start, if the print cant continue we now let the user know why whenever possible. This includes when the print exceeds the build volume due to switching on features like spiral printing and brim.

Without taking away options from users we hope that the above features will enable more prints to be successful and less chance of jamming or damaging your Robox.

Since the last release we noticed a few small issues which have also been addressed in this release;

  • Fixed macro selection issue – DM macro incorrectly selected in some situations when SM head mounted on dual-extruder printer.
  • Settings for Support, Raft, Brim now fit on the screen correctly
  • Bed axes move correctly when AutoMaker is resized
  • Calibration improvement – prevents apparent leak of nozzle when starting nozzle open calibration (only experienced by a minority of customers)
New materials – techABS
I’m very excited about this! ABS is the material of choice for many design engineers, its mechanical properties are well rounded and can have a mirror polish, it accepts a wide range of glues and paints as well as sanding and cutting nicely. Its a bit more difficult to print perfectly and warping and shrinkage have been a cause of pain on may prints. This new formula goes a good way to fix this, it prints at a slightly lower temperature and requires a cooler bed to stick down. A lower shrink rate along with these other properties means that parts print reliably, have good mechanical dimensions and have a beautiful surface finish.

Automaker 2.01.02 – New Feature! – Support Material Gap

By | AutoMakerNewsflash, Design, Materials, News, Software Updates | 6 Comments

As we start to key up CEL and Robox for dual material printing we have introduced a lot of new concepts. Most of our users will have seen some of these multi-material features creeping into AutoMaker over the most recent few releases. Today we’ve added another new feature with AutoMaker 2.01.02 Download here.

We think that one of the most useful features of multi-material printing is the ability to use one material for your part and the other as support structure. This means with the correct choice of material, support can be greatly improved. One of the Materials we been testing is PolyMaker’s PolySupport, we’ve found it to print well in a wide range of temperatures and have consistent structural and functional properties. PolySupport is designed to be a support material for PLA and we found that although its a PLA based material it delaminates easily from PLA and other materials making it very easy to remove. It has elastic and flexible properties which mean its a joy to peel from your model, infinitely easier than using any other Peel-able support material we’ve tested, in-fact its so good we’ve added a this new support gap option.

To further improve the support that an easily peel-able material can give your part we can remove the gap between the top and bottom surface, this gap was necessary when you needed to break-away support structures of the same material. We semi-automated this option, when AutoMaker sees that you are using a different material for support than the one chosen for your parts it will automatically deselect this option.

Support Gap OptionI hear some of you say “Why peel-able, why not focus on dissolvable support?”, well, we thought the same when we started to print with multiple materials but quickly discovered that dissolvable material solutions are messy, take a long time and are often difficult to process and store. Peel-able support can often be removed in a few minutes, where dissolvable support material can take hours if not days to disappear and often require some peeling as well. One thing you might have read about on the internet is the use of limonene to dissolve HIPS away from ABS prints, this is not a reality, after only a few tests we found that limonene does dissolve HIPS, but it also damages the ABS beyond usefulness. The other thing is that unless you LOVE the smell of oranges you quickly grow tired of all your parts, the office, your finger and pretty much everything you own having that pungent smell. Don’t misunderstand me, dissolvable materials will have their place, but for a large majority of support applications we feel easy peel-able is the way forward right now.

We’ve also exposed some of the controls around the generation of support structure to you so that you can tune your profiles to get more perfect parts.

Support Gap Options Profile

 

Version 2.01.02

  • Autoupdate now uses port 80 rather than port 8001
  • Added Support Gap function
    • This controls the vertical distance between the support material and model material which affects how easily support material can be removed
    • Disabled automatically if support material is different to model material (useful when using specialised peel-off support material)
    • Horizontal (Support XY Distance) and vertical (Support Z Distance) offsets are configured in the Print Profiles page
    • If Support Gap is enabled the system will introduce a vertical gap between support and model material
    • If Support Gap is disabled there will be no gap between support and model material
  • Improved filament saver function for dual material printing (automatic heater control during prints)
  • Grouped advanced mode controls onto an Advanced Mode menu on the Preferences page
  • Automatic selection of correct head type on profile page
  • Modified status display to make use of Material 1 and Material 2 clearer

When AutoMaker updates are available your system will usually find and offer an update automatically. If you are behind a firewall or some other system which prevents this, please visit www.cel-robox.com/downloads/ and download the most recent AutoMaker package.

AutoMaker sometimes needs to update the firmware on your printer. Please allow the firmware to update as requested by AutoMaker. If you do not allow the firmware update to take place, AutoMaker may not be able to communicate with your printer.

IMPORTANT NOTE: a firmware update will power cycle your printer so ensure no operations such as a print or calibration are running at the time of the firmware update.

The Ferguson Technique – Dental implants using 3D printed surgical guides

By | Design, Healthcare, News | No Comments

Dr Rick Ferguson DMD presents a webinar hosted by Michael Saltzman, Director of Guided Surgery from Blue Sky Bio.

Dr. Ferguson is a Diplomat of the ICOI, Associate Fellow of the AAID, Clinical Assistant Professor University of Florida. He has lectured nationally and internationally He teaches live surgery and is a visiting lecturer at the University of Miami GPR Program. He has a full time private practice in Davie, FL. His course in dental implants can be viewed on his website here http://www.implanteducators.com/index.php/courses/3d-course

Dr Ferguson gives a brief look at previous guided surgery techniques and guides and compares them to the current method he uses and teaches in using 3D printed surgical guides. Rick describes the development of his technique which enables in practice low cost guided surgery.

Several cases are presented during this webinar including each stage of the workflow for each case, reasoning and options, costs and alternatives. Please note that case documentation includes 3D scans of bones as well as photos and video of guided surgery taking place which is quite graphic, the information presented is more suited to dentists than patients.

Examples of workflows in past high cost methods and current low cost 3D printed guides. Dr Ferguson shows examples using Robox and provides comparisons to Form2 DentalSG workflows and printed surgical guides.

The free software Dr Ferguson uses in this video can be found in the links below:

You can buy a Robox as used by Dr Ferguson directly from Blue Sky Bio’s US website (select United States from the dropdown on their site) https://blueskybio.com/store/cel-robox or from a Robox reseller closer to you www.cel-robox.com/where-to-buy/. The material used to print surgical guides with Robox is nGen by Dutch company Colorfabb, you can buy this from Robox resellers on Robox SmartReels. Robox does allow printing with materials from other suppliers and the range of materials available on SmartReels is constantly being updated.

Spiral Printing on Robox

By | Chris Elsworthy Design Blog, Design, Printables, Software Updates, Stuff and Things | 4 Comments

If you’ve downloaded the latest version of AutoMaker then you may have noticed that we’ve activated Spiral Printing for you to play with. Robox is particularly good at spiral printing as it offers the highest ranges of wall thickness without having to remove and replace the nozzle.

Below is a quick guide on how to best use this new feature.
There are a number of things that you should be aware of when trying this feature.

  1. Only place one object on the bed at any time.
    Because of the nature of spiral printing the flow of material from the nozzles does not stop and start. Placing more than one object on the bed means that the models would be impossible to print in one continuous extrusion.
  2. Ensure that your print has only one continuous island from bottom to top.
    This is for the same reason – multiple islands on any layer means that the flow of material has to stop and start. Spiral printing is designed to avoid this.
  3. Consider how thick you want the base to be
    This is one of the few controls Automaker has for spiral printing, the number of layers you choose and the layer thickness will equate to your base thickness before spiral printing starts. The first layer is always 0.3mm and as a guide I would ensure that this is the minimum filament width to ensure good adhesion to the bed. The sequence layers heights are controlled by, yes you’ve guessed it, ‘layer height’. So for example if you’ve chosen a layer height of 0.2mm and 5 base layers your spiral print with have a 1.1mm thick base. (0.3mm + (4 x 0.2mm))
  4. Think about what wall thickness you want
    After the base of your part is completed the system moves to the spiral printed section, continuously moving up as it orbits the perimeter of your design laying down a single line of filament. The wall thickness is controlled by the perimeter width and because its only going to be done in one pass you may want to increase it and use the larger 0.8mm nozzle to create wall thickness of up to 1.2mm. As a guide I’ve found that the ratio between layer height and wall thickness should be between 2:1 – 5:1, the thicker the wall and the smaller the layer height the more likely overhangs will be printed perfectly.
  5. The part must be solid, not hollowed out with a wall thickness
    Because we are using ‘Solid layers at Bottom’ and perimeter thickness to control the thickness of your part the part needs to be a solid to start with. If you want an inner and outer shell, and don’t mind a hollow centre you can use an idea I had when designing the is thermal mug: add a very thin cut down through the part to make each layer a single perimeter again. On the photo below, you can see that the sequence of printing is outside surface of the bowl -> half the handle -> inside surface of the bowl -> half the handle -> outside surface of the bowl… and so on…Thermal MugSpiral Mug Section Small
    6 . Your design is less than 99mm tall
    Robox has a 100mm Z-build height, but because of the way Cura adds the Z move to every move on the layer sometimes the sliced part will come out slightly above 100mm. The post processor will throw this out as impossible print, so to avoid this scale your part to ensure it is less than 99mm high.

Robox_spiral_cup_iso

You can download the cup above from this link. robox_spiral_mug.stl

Robox_spiral_lee_hand

Or the Vase with Support engineer Lee’s face on it by clicking the image above. LeeVase_Mk2.stl

Why pay when free software can do the job?

By | Design, Robox User Blog, Stuff and Things | 4 Comments

A key driver of desktop 3D printing technology adoption over the last few years has been the proliferation of completely free 3D modelling tools that are, crucially, user-friendly and extremely high quality. Since these tools are such powerful enablers of 3D printing technology and, during meetings with customers, I often end up sharing my thoughts on the merits of various 3D modelling software tools anyway, I considered I should offer a short summary of tools I use personally and would recommend for use with any 3D printer.

Each tool listed here performs distinct tasks in the 3D modelling process so there’s no overlap of functions between them. The purpose of this list is purely to inform of the tools that I use personally, not to offer any kind of comparison. Some more advanced users may scoff at my 3D modelling arsenal, but I’d ask that they bear in mind my non-engineering background. Despite my novice experience and skills, I’ve found that the following tools work very well together to do pretty much anything I want to do – from designing high-precision mechanisms to personalising Xmas gifts. All of these software tools are free to use because, like most people, I don’t like spending money when I don’t have to.

1. 3D Builder

I use this tool from Microsoft all the time to edit 3D models as it has the cleanest, most user-friendly interface of any 3D modelling tool I’ve used. It looks and feels great, especially when I use it to demonstrate how easy it is to customise and personalise any one of the thousands of free 3D models available from online repositories such as Thingiverse or MyMiniFactory (the latter is integrated into Robox’s AutoMaker software). While 3D Builder is in its element when used to emboss text, logos and other images, it’s equally superb in other areas such as splitting and resizing large models into smaller parts.

3D Builder

2. 123D Design

This is another free tool that I use all the time, but for creating 3D models rather than editing them. 123D Design is made by Autodesk and, as a result, it’s clean, simple and easy to use with a range of features that satisfies virtually all of my modelling needs. While it lacks most of the advanced features found in 3D modelling software tools such as SolidWorks or Autodesk Inventor, it does boast a key feature not found in most expensive 3D modelling tools – the ability to save to the cloud.

I frequently recommend 123D Design since it’s completely free and offers versatile, powerful functionality with an interface suitable for novices and professionals alike. Its high quality is thanks to it being made by one of the best 3D software development companies in the world, which also happens to make the next 3D modelling tool on this list.

123D Design

3. Meshmixer

Meshmixer is my tool of choice for touching up 3D models. The thing I like most about Meshmixer is the way that models can be sculpted naturally by pulling and pushing on surfaces or cutting parts of a model away. Packed with a wide range of versatile, powerful features which perform extremely useful functions such as smoothing and distorting a surface or hollowing out a model, Autodesk’s Meshmixer is an essential tool in my box of freebies.

An important point to note is that Meshmixer is used to edit organic, rather than geometric, models. An organic model consists of natural, flowing curves and shapes whereas a geometric model is one that comprises perfect, uniform shapes that don’t often appear in nature. The model created in 123D Design above, for example, from geometric shapes such as rectangles, triangles and circles wouldn’t edit well in Meshmixer. However, models captured from 3D scans, such as the duck below, are perfect for editing with this tool, which brings me to yet another Autodesk product…

Meshmixer

4. 123D Catch

The final free 3D modelling tool on this list is, without a doubt, the most accessible 3D scanning tool out there. Again, it’s completely free but, unlike the other software listed here, it’s designed to be used on a mobile device such as a smartphone or tablet computer. 123D Catch is an extremely cost-effective (free!) and convenient alternative to dedicated handheld 3D scanning equipment, which starts at around £300 and typically looks like something airport security would get out if you set off a metal detector. I’ve used the app to scan people, objects, buildings, you name it. The app is easy to use and can produce good quality scans, which can be improved further and touched up using Meshmixer. The only drawback to this app is the length of time it takes for photos to be uploaded to Autodesk and processed. It can be a little frustrating – especially if you have poor mobile phone signal! – but I understand frustration to be a feature of all current handheld 3D scanning technologies to a greater or lesser extent.

123D Catch

I did consider adding a fifth 3D modelling tool to this list since 4 is an unusual number to end a list on, but since these four tools take up around 95% of my 3D modelling time I didn’t feel it was appropriate to add another. Tinkercad would most likely have been the fifth free tool , which you can see in action below:

The combined value of this small collection of tools is considerably more than the sum of its parts. When used together, these apps can transform any 3D printer from a novelty to magic. Although I’m currently experimenting with more heavy duty 3D modelling software such as SpaceClaim (I’ve received a free trial) and may end up adding more software to this list, for now I think I’ll be sticking with the free stuff.

Please note: CEL has no commercial ties with Autodesk. They just so happen to make a great suite of free 3D modelling tools.

CEL Robox in Ashlyns School

By | Design, Education, Robox User Blog | No Comments

“Sir, is that a 3D printer?” I enquired, “Yes Al, let’s unpack it and see if we can get it working. Are you free after school?” That was the start of it. We took the Robox out of its packaging followed the quick start-up guide and 3D printed our first ever product in under an hour. The product itself was a very small pyramid from the sample files but it was a very definite, very successful start. I’m liking this already!

Like most D&T departments in state schools, the acquiring and implementation of new technologies and equipment is something that has to be carefully managed and justified in budgets. One of the first markers for whether a piece of equipment is worthwhile is the question of impact. On Open Evening Al chose to run the Robox for 4 hours producing a much larger and more complex model. The interest from prospective students, current students, parents and staff was incredible. The feedback sheets from the evening consistently noted two amazing things seen at Open Evening; the brand new sports hall and the 3D printer in D&T.

Stage one, impact, tick!

“Stage two Sir?”, “Yes Al, stage two”. Can I use it in class as a useful piece of equipment in the Product Design students’ tool box? The department already has a small laser cutter and a vinyl cutter that are used relentlessly. In order to test this out Mr Nicholson ‘gave me the keys’ to take it for a proper spin, designing and making. I’m on the AS D&T Graphic Products course and I’m at the design stage of a project to design and model an ‘outdoor’ classroom to be set in the school grounds. I downloaded a free copy of Autodesk-123D and set about the scale model. The bed of the Robox is about A5 and my card model was considerably bigger. The 3D print would be too small if I made it fit the bed so I chose to use the 100mm Z axis and the A5 bed as a start point. I split the model into 8 pieces, 6 of which were doubles (keeping the design modular really helps when you’re using CAM!). I ran the Robox all day and overnight, carefully removing the pieces from the machine’s bed. I used a 10% infill for the blocks so that they would be rigid but not use up too much of the PLA filament. I could stick them together to form the completed model but it’s more useful at the moment for me to have them in smaller blocks so that they fit in my school bag!

I’m not used to D&T being quite this straightforward!

At the point where a number of schools were considering the future of their D&T departments, for financial reasons, Ashlyns were determined to keep the breadth of curriculum and the enrichment that D&T offers. The subject was allied into a Faculty structure with Computer Science and Business Studies. The cross-linking between these three quite different subjects is growing by the day and at its heart is creativity and enterprise, ably assisted of course by control technology, software and CAM. The Faculty’s results have gone from strength to strength as the interest builds and the ‘newer’ technologies are introduced and take their place alongside the traditional. I use the word ‘alongside’ for various reasons. Can I afford a whole class of 3D printers? Would I want to? The answer to both is no. Firstly, I could have bought 10 Robox machines for the price I paid for the laser cutter but then students make so much use of the laser cutter, so quickly and with such a variety of materials. Secondly, every new piece of technology adds another dimension to the subject and doesn’t need to replace anything, older methods often employ a more appropriate level of technology.

However, ask me the question “Would I like more Robox machines in my classrooms?” the answer would be 100% “Yes!”

Most D&T A’ Level courses still have a 50% restriction on how much of the final work can be manufactured using CAD/CAM. Possibly to make sure that traditional skills are still developed or to enable a more level playing field for students from different socio-economic backgrounds, the restrictions are there and may well still be there after the introduction of the new specifications. Has that stopped us from using other forms of CAD/CAM in the past? Of course not, life without the laser cutter doesn’t bear thinking about and as the necessity to increase the students’ exposure to newer technologies for example through the NC 2014 it will need to become part and parcel of what we do. With the NC 2014 in mind, the opportunities to develop some designs based on biomimicry is next on my list!

Before getting the Robox I used to trot out a number of reasons why the department wouldn’t need a 3D printer, mainly based around speed, size restriction, cost but the truth is that you just need to be a bit creative with how it gets used and as always the D&T community is full of ideas and ways forward. The following are a few that have sprung to mind. Firstly, everyone designs and then the class vote for which one gets made (and sometimes those still interested can come back at lunchtime or after school to get theirs made!). Secondly, smaller multiple designs that can fit on the same machine bed. Thirdly, increase the number of machines. I already have systems in place to help replace cookers and sewing machines so I just need to add them to the list and buy half-a-machine per year (or ask the school association!). Lastly, the Robox is a very portable machine and has already been at home with me.

The rapid set-up and zero clamping means that the files just need to be left to get on with manufacturing!

It has to be said that the efficiency of the material consumed is financially useful and the outcomes even on draft resolution are easily enough to portray the detail required. With new materials coming online, that go beyond the already available plethora of colours, such as rubber and dissolvable media, the future is brightly coloured and very flexible!

Ashlyns_school_logoMark Nicholson and Al Cox
Ashlyns School
Berkhamsted